Перевод: со всех языков на все языки

со всех языков на все языки

founded in 1872

  • 1 Daughters of Our Lady Help of Christians (One of the largest Roman Catholic religious congregations of women, founded in 1872)

    Религия: конгрегация "Облатки св. Франциска Сальского"

    Универсальный англо-русский словарь > Daughters of Our Lady Help of Christians (One of the largest Roman Catholic religious congregations of women, founded in 1872)

  • 2 Daughters of Our Lady Help of Christians

    Религия: облатки св. Франциска Сальского, сестры салезианки, (One of the largest Roman Catholic religious congregations of women, founded in 1872) конгрегация "Облатки св. Франциска Сальского"

    Универсальный англо-русский словарь > Daughters of Our Lady Help of Christians

  • 3 конгрегация Облатки св. Франциска Сальского

    Универсальный русско-английский словарь > конгрегация Облатки св. Франциска Сальского

  • 4 IEP

       popularly referred to as Sciences Po, IEP are selective-entry schools of politics and economics, within the French university system. There are currently nine IEP, the most prestigious of them being the IEP de Paris. IEP provide a rounded multidisciplinary higher education and training for future leaders of the private sector and the civil service. They also prepare students for the gruelling competitive entry exams for the ENA, France's top school of administration, and other graduate schools. Students follow courses in politics and economics, but also languages, sociology, history and geography; this multidisciplinary approach, while going against the grain of many traditional concepts of higher education, is popular in France, and is much appreciated by students and employers. Graduates obtain a first degree or a masters degree, depending on the point of exit. The Paris IEP was founded in 1872, the others after the Second World War. See Higher Education.

    Dictionnaire Français-Anglais. Agriculture Biologique > IEP

  • 5 Sciences Po

       Name used, even formally, by the Institut des Etudes Politiques de Paris, an autonomous state-funded school of higher education (grand établissement), founded in 1872, and a university in all but name. The undergraduate course at Sciences Po, designed to produce graduates with a solid understanding of the workings of the modern world, is a pluridisciplinary degree covering a range of social sciences, including history, law, politics, economics, sociology, and foreign languages. Many leading French politicians, businessmen and civil servants have degrees from Sciences Po, and the school's increasing success has led to the opening of smaller campuses, offering specialist courses, in Dijon, Poitiers, Menton and Nancy.
       Sciences Po is one of the top ranked institutes of higher education in France and in Europe, and competition for places is stiff. The school runs joint degree courses with several top international schools, including the universities of Columbia and Georgetown in the USA, and LSE in Great Britain. Many leading French politicians, businessmen and civil servants have degrees from Sciences Po, and the school's increasing success has led to the opening of smaller campuses, offering specialist courses, in Dijon, Poitiers, Menton and Nancy.
       The official Aeres audit of Sciences Po in 2008 described the institution as being "seen from abroad as a typically French institution, rather difficult to situate and to comprehend." It defined the school's mission as being to train graduates with "knowledge, but also understanding, of society and the world... in short to educate them".
       The name 'Sciences Po' is also used commonly to refer to Instituts d'Etudes Politiques (IEP) attached to a number of universities.

    Dictionnaire Français-Anglais. Agriculture Biologique > Sciences Po

  • 6 Siemens, Sir Charles William

    [br]
    b. 4 April 1823 Lenthe, Germany
    d. 19 November 1883 London, England
    [br]
    German/British metallurgist and inventory pioneer of the regenerative principle and open-hearth steelmaking.
    [br]
    Born Carl Wilhelm, he attended craft schools in Lübeck and Magdeburg, followed by an intensive course in natural science at Göttingen as a pupil of Weber. At the age of 19 Siemens travelled to England and sold an electroplating process developed by his brother Werner Siemens to Richard Elkington, who was already established in the plating business. From 1843 to 1844 he obtained practical experience in the Magdeburg works of Count Stolburg. He settled in England in 1844 and later assumed British nationality, but maintained close contact with his brother Werner, who in 1847 had co-founded the firm Siemens \& Halske in Berlin to manufacture telegraphic equipment. William began to develop his regenerative principle of waste-heat recovery and in 1856 his brother Frederick (1826–1904) took out a British patent for heat regeneration, by which hot waste gases were passed through a honeycomb of fire-bricks. When they became hot, the gases were switched to a second mass of fire-bricks and incoming air and fuel gas were led through the hot bricks. By alternating the two gas flows, high temperatures could be reached and considerable fuel economies achieved. By 1861 the two brothers had incorporated producer gas fuel, made by gasifying low-grade coal.
    Heat regeneration was first applied in ironmaking by Cowper in 1857 for heating the air blast in blast furnaces. The first regenerative furnace was set up in Birmingham in 1860 for glassmaking. The first such furnace for making steel was developed in France by Pierre Martin and his father, Emile, in 1863. Siemens found British steelmakers reluctant to adopt the principle so in 1866 he rented a small works in Birmingham to develop his open-hearth steelmaking furnace, which he patented the following year. The process gradually made headway; as well as achieving high temperatures and saving fuel, it was slower than Bessemer's process, permitting greater control over the content of the steel. By 1900 the tonnage of open-hearth steel exceeded that produced by the Bessemer process.
    In 1872 Siemens played a major part in founding the Society of Telegraph Engineers (from which the Institution of Electrical Engineers evolved), serving as its first President. He became President for the second time in 1878. He built a cable works at Charlton, London, where the cable could be loaded directly into the holds of ships moored on the Thames. In 1873, together with William Froude, a British shipbuilder, he designed the Faraday, the first specialized vessel for Atlantic cable laying. The successful laying of a cable from Europe to the United States was completed in 1875, and a further five transatlantic cables were laid by the Faraday over the following decade.
    The Siemens factory in Charlton also supplied equipment for some of the earliest electric-lighting installations in London, including the British Museum in 1879 and the Savoy Theatre in 1882, the first theatre in Britain to be fully illuminated by electricity. The pioneer electric-tramway system of 1883 at Portrush, Northern Ireland, was an opportunity for the Siemens company to demonstrate its equipment.
    [br]
    Principal Honours and Distinctions
    Knighted 1883. FRS 1862. Institution of Civil Engineers Telford Medal 1853. President, Institution of Mechanical Engineers 1872. President, Society of Telegraph Engineers 1872 and 1878. President, British Association 1882.
    Bibliography
    27 May 1879, British patent no. 2,110 (electricarc furnace).
    1889, The Scientific Works of C.William Siemens, ed. E.F.Bamber, 3 vols, London.
    Further Reading
    W.Poles, 1888, Life of Sir William Siemens, London; repub. 1986 (compiled from material supplied by the family).
    S.von Weiher, 1972–3, "The Siemens brothers. Pioneers of the electrical age in Europe", Transactions of the Newcomen Society 45:1–11 (a short, authoritative biography). S.von Weihr and H.Goetler, 1983, The Siemens Company. Its Historical Role in the
    Progress of Electrical Engineering 1847–1980, English edn, Berlin (a scholarly account with emphasis on technology).
    GW

    Biographical history of technology > Siemens, Sir Charles William

  • 7 Chaudron, Joseph

    [br]
    b. 29 November 1822 Gosselies, Belgium
    d. 16 January 1905 Auderghem, Belgium
    [br]
    Belgian mining engineer, pioneer in boring shafts.
    [br]
    In 1842, as a graduate of the Ecole des Mines in Liège, he became a member of the Belgian Corps Royal des Mines, which he left ten years later as Chief Engineer. By that time he had become decisively influential in the Société Anglo-Belge des Mines du Rhin, founded in 1848. After it became the Gelsenkirchen-based Bergwerkgesellschaft Dahlbusch in 1873, he became President of its Board of Directors and remained in this position until his death. Thanks to his outstanding technical and financial abilities, the company developed into one of the largest in the Ruhr coal district.
    When K.G. Kind practised his shaft-boring for the company in the early 1850s but did not overcome the difficulty of making the bottom of the bore-hole watertight, Chaudron joined forces with him to solve the problem and constructed a rotary heading which was made watertight with a box stuffed with moss; rings of iron tubing were placed on this as the sinking progressed, effectively blocking off the aquiferous strata as a result of the hydrostatic pressure which helped support the weight of the tubing until it was secured permanently. The Kind-Chaudron system of boring shafts in the full section marked an important advance upon existing methods, and was completely applied for the first time at a coalmine near Mons, Belgium, in 1854–6. In Brussels Chaudron and Kind founded the Société de Fonçage par le Procédé Kind et Chaudron in 1854, and Chaudron was granted a patent the next year. Foreign patents followed and the Kind-Chaudron system was the one most frequently applied in the latter part of the nineteenth century. Altogether, under Chaudron's control, there were more than eighty shafts sunk in wet strata in Germany, Belgium, France and England.
    [br]
    Bibliography
    1853–4, "Notice sur le procédé inventé par l'ingénieur Kind, pour l"établissement des puits de mines', Annales des travaux publics de Belgique 12:327–38.
    1862, "Über die nach dem Kindschen Erdbohrverfahren in Belgien ausgefùhrten Schachtbohrarbeiten", Berg-und Hüttenmännische Zeitschrift 21:402−7, 419−21, 444−7.
    1867, "Notice sur les travaux exécutés en France, en Belgique et en Westphalie de 1862– 1867", Annales des travaux publics de Belgique 25: 136–45.
    1872, "Remplacement d'un cuvelage en bois par un cuvelage en fonte", Annales des
    travaux publics de Belgique 30:77–91.
    Further Reading
    D.Hoffmann, 1962, Acht Jahrzehnte Gefrierverfahren nachPötsch, Essen, pp. 12–18 (evaluates the Kind-Chaudron system as a new era).
    W.Kesten, 1952, Geschichte der Bergwerksgesellschaft Dahlbusch, Essen (gives a delineation of the mining company's flourishing as well as the technical measures under his influence).
    T.Tecklenburg, 1914, Handbuch der Tiefbohrkunde, 2nd edn, Vol VI, Berlin, pp. 39–58 (provides a detailed description of Chaudron's tubing).
    WK

    Biographical history of technology > Chaudron, Joseph

  • 8 Chubb, John

    [br]
    b. 1816 Portsea, Hampshire, England
    d. 30 October 1872 Brixton Rise, London, England.
    [br]
    English locksmith.
    [br]
    He succeeded his father, who had founded the family firm of Chubb \& Son, and patented many improvements to locks, safes, strong rooms and the like. He was elected a member of the Institution of Civil Engineers in 1845, where he delivered an important paper on locks and keys which included a list of all British patents in the field up to the date of the paper as well as of all communications on the same subject to the Royal Society of Arts; for this he was awarded the Telford Medal.
    John Chubb was followed into the family business by his three sons, John C.Chubb, George H.Chubb (who was created Lord Hayter of Chislehurst in 1928) and Henry W.Chubb.
    [br]
    Principal Honours and Distinctions
    Institution of Civil Engineers Telford Medal 1845. See also: Chubb, Charles.
    IMcN

    Biographical history of technology > Chubb, John

  • 9 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 10 Ferguson, Peter Jack

    SUBJECT AREA: Ports and shipping
    [br]
    b. 21 July 1840 Partick, near Glasgow, Scotland
    d. 17 March 1911 Greenock, Scotland
    [br]
    Scottish marine engineer, pioneer of multiple-expansion steam reciprocating machinery.
    [br]
    Ferguson was educated at the High School of Glasgow before going on to serve his apprenticeship in the engineering department of Thomas Wingate's shipyard. This yard, situated at Whiteinch, then just outside the Glasgow boundary, built interesting and innovative craft and had a tradition of supplying marine engines that were at the leading edge of technology. On his appointment as Manager, Ferguson designed several new types of engines, and in 1872 he was responsible for the construction of what is claimed to be the world's first triple-expansion engine, predating the machinery on SS Propontis by two years and Napier's masterpiece, the SS Aberdeen, by nine years. In 1885, along with others, he founded the shipyard of Fleming and Ferguson, of Paisley, which in the subsequent eighty-five years was to build nearly seven hundred ships. From the outset they built advanced steam reciprocating machinery as well as dredging and other types of plant. The new shipyard was to benefit from Ferguson's experience and from the inspiration he had gained in Wingate's, where experimentation was the norm.
    [br]
    Further Reading
    F.M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuiding, Cambridge: PSL.
    FMW

    Biographical history of technology > Ferguson, Peter Jack

  • 11 Koch, Robert

    SUBJECT AREA: Medical technology
    [br]
    b. 11 December 1843 Clausthal, Hannover, Germany
    d. 28 May 1910 Baden-Baden, Germany
    [br]
    German bacteriologist and innovator of many bacteriological techniques, including the process of bacteria-free water filtration and the introduction of solid cultivation media.
    [br]
    Koch studied medicine at Gottingen and graduated MD in 1866. He served in the war of 1870, and in 1872 was appointed Medical Officer at Wollstein. It was there that he commenced his bacteriological researches which led to numerous technical advances and the culture of the anthrax bacillus in 1876.
    Appointed in 1880 to the Imperial Health Office in Berlin, he perfected his methods and was appointed Professor of Hygiene in the University of Berlin in 1885. From 1886 he was editor of the Zeitschrift für Hygiene und Infektionskrank-heiten, which was published in Leipzig. In 1891 he became Director of the Institute for Infectious Diseases, founded for him in Berlin. He had already discovered the tubercle bacillus in 1882 and the cholera vibrio in 1883. He travelled extensively in India, Africa and South Africa in connection with research into bubonic plague, malaria, rinderpest and sleeping sickness. His name will always be associated with Koch's postulates, the propositions which need to be satisfied before attributing a disease to a specific infective agent.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Medicine or Physiology 1905.
    Bibliography
    1877, "Verfahrungen zur Untersuchung zum Conservieren und Photographieren der Bacterien", Beitr. Biol. Pflanzen.
    Further Reading
    M.Kirchner, 1924, Robert Koch.
    MG

    Biographical history of technology > Koch, Robert

  • 12 Morse, Samuel Finley Breeze

    SUBJECT AREA: Telecommunications
    [br]
    b. 27 April 1791 Charlestown, Massachusetts, USA
    d. 2 April 1872 New York City, New York, USA
    [br]
    American portrait painter and inventor, b est known for his invention of the telegraph and so-called Morse code.
    [br]
    Following early education at Phillips Academy, Andover, at the age of 14 years Morse went to Yale College, where he developed interests in painting and electricity. Upon graduating in 1810 he became a clerk to a Washington publisher and a pupil of Washington Allston, a well-known American painter. The following year he travelled to Europe and entered the London studio of another American artist, Benjamin West, successfully exhibiting at the Royal Academy as well as winning a prize and medal for his sculpture. Returning to Boston and finding little success as a "historical-style" painter, he built up a thriving portrait business, moving in 1818 to Charleston, South Carolina, where three years later he established the (now defunct) South Carolina Academy of Fine Arts. In 1825 he was back in New York, but following the death of his wife and both of his parents that year, he embarked on an extended tour of European art galleries. In 1832, on the boat back to America, he met Charles T.Jackson, who told him of the discovery of the electromagnet and fired his interest in telegraphy to the extent that Morse immediately began to make suggestions for electrical communications and, apparently, devised a form of printing telegraph. Although he returned to his painting and in 1835 was appointed the first Professor of the Literature of Art and Design at the University of New York City, he began to spend more and more time experimenting in telegraphy. In 1836 he invented a relay as a means of extending the cable distance over which telegraph signals could be sent. At this time he became acquainted with Alfred Vail, and the following year, when the US government published the requirements for a national telegraph service, they set out to produce a workable system, with finance provided by Vail's father (who, usefully, owned an ironworks). A patent was filed on 6 October 1837 and a successful demonstration using the so-called Morse code was given on 6 January 1838; the work was, in fact, almost certainly largely that of Vail. As a result of the demonstration a Bill was put forward to Congress for $30,000 for an experimental line between Washington and Baltimore. This was eventually passed and the line was completed, and on 24 May 1844 the first message, "What hath God wrought", was sent between the two cities. In the meantime Morse also worked on the insulation of submarine cables by means of pitch tar and indiarubber.
    With success achieved, Morse offered his invention to the Government for $100,000, but this was declined, so the invention remained in private hands. To exploit it, Morse founded the Magnetic Telephone Company in 1845, amalgamating the following year with the telegraph company of a Henry O'Reilly to form Western Union. Having failed to obtain patents in Europe, he now found himself in litigation with others in the USA, but eventually, in 1854, the US Supreme Court decided in his favour and he soon became very wealthy. In 1857 a proposal was made for a telegraph service across the whole of the USA; this was completed in just over four months in 1861. Four years later work began on a link to Europe via Canada, Alaska, the Aleutian Islands and Russia, but it was abandoned with the completion of the transatlantic cable, a venture in which he also had some involvement. Showered with honours, Morse became a generous philanthropist in his later years. By 1883 the company he had created was worth $80 million and had a virtual monopoly in the USA.
    [br]
    Principal Honours and Distinctions
    LLD, Yale 1846. Fellow of the Academy of Arts and Sciences 1849. Celebratory Banquet, New York, 1869. Statue in New York Central Park 1871. Austrian Gold Medal of Scientific Merit. Danish Knight of the Danneborg. French Légion d'honneur. Italian Knight of St Lazaro and Mauritio. Portuguese Knight of the Tower and Sword. Turkish Order of Glory.
    Bibliography
    E.L.Morse (ed.), 1975, Letters and Journals, New York: Da Capo Press (facsimile of a 1914 edition).
    Further Reading
    J.Munro, 1891, Heroes of the Telegraph (discusses his telegraphic work and its context).
    C.Mabee, 1943, The American Leonardo: A Life of Samuel Morse; reprinted 1969 (a detailed biography).
    KF

    Biographical history of technology > Morse, Samuel Finley Breeze

  • 13 Titt, John Wallis

    [br]
    b. 1841 Cheriton, Wiltshire, England
    d. May 1910 Warminster, Wiltshire, England
    [br]
    English agricultural engineer and millwright who developed a particular form of wind engine.
    [br]
    John Wallis Titt grew up on a farm which had a working post-mill, but at 24 years of age he joined the firm of Wallis, Haslam \& Stevens, agricultural engineers and steam engine builders in Basingstoke. From there he went to the millwrighting firm of Brown \& May of Devizes, where he worked for five years.
    In 1872 he founded his own firm in Warminster, where his principal work as an agricultural engineer was on hay and straw elevators. In 1876 he moved his firm to the Woodcock Ironworks, also in Warminster. There he carried on his work as an agricultural engineer, but he also had an iron foundry. By 1884 the firm was installing water pumps on estates around Warminster, and it was about that time that he built his first wind engines. Between 1884 and 1903, when illness forced his retirement, his wind engines were built primarily with adjustable sails. These wind engines, under the trade marks "Woodcock" and "Simplex", consisted of a lattice tower with the sails mounted on a a ring at the top. The sails were turned to face the wind by means of a fantail geared to the ring or by a wooden vane. The important feature lay in the sails, which were made of canvas on a wood-and-iron frame mounted in a ring. The ends of the sail frames were hinged to the sail circumferences. In the middle of the sail a circular strap was attached so that all the frames had the same aspect for a given setting of the bar. The importance lies in the adjustable sails, which gave the wind engine the ability to work in variable winds.
    Whilst this was not an original patent of John Wallis Titt, he is known to be the only maker of wind engines in Britain who built his business on this highly efficient form of sail. In design terms it derives from the annular sails of the conventional windmills at Haverhill in Suffolk and Roxwell in Essex. After his retirement, his sons reverted to the production of the fixed-bladed galvanized-iron wind engine.
    [br]
    Further Reading
    J.K.Major, 1977, The Windmills of John Wallis Titt, The International Molinological Society.
    E.Lancaster Burne, 1906, "Wind power", Cassier' Magazine 30:325–6.
    KM

    Biographical history of technology > Titt, John Wallis

См. также в других словарях:

  • 1872 in association football — The following are the association football events of the year 1872 throughout the world.Events*February 24 ndash; In London, played another unofficial match England which defeat Scotland 1 0. *March 16 ndash; England: Inaugural FA Cup Final:… …   Wikipedia

  • 1872 in Wales — This article is about the particular significance of the year 1872 to Wales and its people. Incumbents*Prince of Wales Edward Albert, son of Queen Victoria of the United Kingdom *Princess of Wales Alexandra of DenmarkEvents*January 5 In a mining… …   Wikipedia

  • 1872 — Year 1872 (MDCCCLXXII) was a leap year starting on Monday (link will display the full calendar) of the Gregorian Calendar (or a leap year starting on Saturday of the 12 day slower Julian calendar). It was a year in the 19th Century. Events of… …   Wikipedia

  • 1872 FA Cup Final — The 1872 FA Cup Final was the first final of the world s oldest football competition, the FA Cup. The match took place on March 16, 1872 at the Kennington Oval, London, England, and was won by the Wanderers with a 1 0 victory over a team from the …   Wikipedia

  • 1872 in Canada — See also: 1871 in Canada, other events of 1872, 1873 in Canada and the list of years in Canada . Events* March 14: Henry Joseph Clarke becomes premier [ [http://www.electionsmanitoba.ca/main/history/premiers.htm Elections Manitoba] ] of Manitoba …   Wikipedia

  • 1872 in sports — yearbox in?=in sports cp=18th century c=19th century cf=20th century yp1=1869 yp2=1870 yp3=1871 year=1872 ya1=1873 ya2=1874 ya3=1875 dp3=1840s dp2=1850s dp1=1860s d=1870s da=0 dn1=1880s dn2=1890s dn3=1900s|Baseball*The National Association (NA)… …   Wikipedia

  • 1872 in rail transport — EventsMarch events* March ndash; John A. Dix succeeds Jay Gould as president of the Erie Railroad. * March 1 ndash; Jackson and Woodin Manufacturing Company, one of the constituent companies of American Car and Foundry Company, is incorporated in …   Wikipedia

  • List of religious leaders in 1872 — 1871 religious leaders Events of 1872 1873 religious leaders Religious leaders by year See also: *List of state leaders in 1872 *List of colonial governors in 1872 Bahá í FaithBahá u lláh, meaning the Glory of God in English founded the Bahá í… …   Wikipedia

  • TAYLOR, George Augustine (1872-1928) — artist, journalist, and inventor was born at Sydney in 1872. He first became known as an artist, and was a member of the Sydney Bohemian set in the 1890s, whose doings he was afterwards to record in his Those Were the Days, a volume of… …   Dictionary of Australian Biography

  • Rutgers University Glee Club — Founded in 1872, the Rutgers University Glee Club (RUGC) is the eighth oldest Glee Club in United States of America, a nationally recognized men s chorus based at Rutgers University, in New Brunswick, New Jersey. It is currently conducted by Dr.… …   Wikipedia

  • Björn Ulvaeus — Infobox Musical artist Name = Björn Ulvaeus Img capt = Img size = Landscape = Background = Birth name = Björn Kristian Ulvaeus Born = birth date and age|df=yes|1945|04|25 Origin = Stockholm, Sweden Occupation = Songwriter, Composer, writer,… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»